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Abstract

A two-zone microslip theory was used to study cylinder rolling contact. The
theory was validated by experiment. The experimental study involved direct
strain-gage measurements in the contact area of the rolling cylinders. The state
of strain in the wheel/rail contact region was studied. Contact region siress
distributions for various relative positions of the wheelset with respect to the
rail track were determined. Angles of attack were accounted for. The
computational results were used to design improved contours of wheel tread
and rail head.

1 Introduction

A study into wheel/rail contact interaction should include an analysis of the state
of stress at the wheel and rail running surfaces in the vicinity of the contact
region. Microslip is known to influence the distribution of the adhesion zone
and the relative slip region at the interacting surfaces and, consequently, the
profiles of contact stresses and the surface wear. A study into the microslip
effect is therefore mandatory for understanding the state of stress in interacting
bodies. As is well-known, there are several theories concerning the number of
adhesion zones and slip zones in contact interaction. For cylinders with identical
elastic constants, the two-zone theory put forward by FW. Carter and H.
Fromm is more widely accepted. According to this theory, the adhesion zone
adjoins the contact region entry while the slip zone is near the exit.
Furthermore, as the tractive force is increased, the slip zone is expanded at the
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expense of the adhesion zome. There are solutions for other theories; for
example, H. Poritsky considered a similar contact problem involving three
zones, namely a middle adhesion zone and two slip zones. Therefore, a three-
dimensional contact problem of wheel/rail interaction can be solved using the
band theory, provided that reliable information is available on the distribution of
the adhesion and slip zones for two rolling cylinders or a cylinder rolling on a
plane.

However, when two contact regions exist in the wheel/rail system, the
contact problem becomes more complex, especially at nonzero angles of attack.
Importantly, it is in this case that the wear rate in the flange zone is at a
maximum as a result of slip occurring here. A study into wheel/rail contact
interactions may suggest changes in the running surface contours with a view to
extending running surface lives.

2 Microslip in relling cylinders

Several researchers studied microslip using strain gages. A common limitation
of those studies was that the strain gages were embedded in the contacting
bodies at depths comparable to or greater than the contact region width. The
strain gage spans also were fairly long. It is therefore desirable to determine the
limiting depth and optimum orientation for a short-span strain gage to be able to
pinpoint the microslip zones.

Consider rolling contact of two elastic cylinders with the radii of R, and
R, forced against each other by the force P and capable of transmitting a
tractive force T. Let the Y-axis go through the centers of the cylinders and the
X-axis be aligned with the contact region. A complex analysis of the state of
stress and strain in the vicinity of cylinder contact region revealed that the
effects of microslip are most pronounced in the distribution of strains ¥y,

measured by strain gages inclined to the X-ads at an angle of 45°. The plot
features associated with the microslip can be traced down to a depth of 0.7b,
where b is the contact region halfiwidth. Clearly, the experimental research
should involve cylindrical models whose moduli of elasticity must be at least one
order of magnitude below that of actual wheels. Furthermore, there are two
ways to increase the contact region width. The first way is to increase P but it is
narrowly limited by the characteristics of the experimental setup and the
necessity to avoid plastic deformations in the test cylinders. The second way is
to increase the diameters of the model cylinders. A test unit was designed that
precluded misalignments in loading and ensured the desired contact interaction
conditions. The cylinder diameter could be as high as 0.5 m, and the contact
region width could thus be increased to 12 mm.

The deformations at wheel sides were measured using foil- and wire-type
strain gages with a span of 1 mm. Some of the measured deformation profiles
exhibited microslip. However, a reliable estimate of the number of microslip
zones is only possible at strain gage depths equal to or less than 0.03b. It is
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difficult to provide such shallow positions of strain gages at wheel sides or
inside a wheel. For this reason, a technique was developed that involved
bonding strain gages directly to the running surfaces of test cylinders made of a
special rubber with a modulus of elasticity equal to 9.44 MPa. The stress-strain
curve of the rubber was such that it could be considered a linear elastic material
at loads up to 0.2 MPa.

Figure 1 depicts £ . strain profiles for the contact surface of a driven
cylinder at various values of the tractive force T. The figure gives three wheel
rolling plots constructed for one value of the vertical force P and three different
values of the tractive force T'= M/R, M being the torque applied to wheel axis,
R the wheel radius. Each plot corresponds to one or other of the tractive force
values T, (T} > T; > T3). The direction of rolling is determined by the angular
speed @ Within the contact region [—5,0] the plots exhibit two sections,
namely [e,,b] with nearly parabolic distributions and [-b,a;] where the
strains decrease until any contact disappears at X =—b. The points @; thus
mark the boundary between the slip zone and the adhesion zone.

This conclusion is supported by comparison of the experimental data with
a theoretical solution based on Glagolev's results [1].

The strain distribution in the contact region can be obtained using
functions (D[z] and '1‘(2) of a complex variable z=x + iy. Applying the

aforementioned solution [1], one can write
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where R,, R, are the wheels radii, A and g the Lamu constants, [ the
coefficient of friction. The contact region halfwidth is
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The boundary 2 is defined as

e ®)
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where A is the torque applied to the wheel axis. Using Muskhelishvili's
relationships [2], one finds for the derivative of wheel displacements w along
the X-axis
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Making allowance for nonuniqueness of the solutions, one obtains through
substitution of Eqs. (1) and {2] to (6) and subsequent passage to the limit at a
contact plane for the strain £, _
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These equations have to do with the driven wheel. Substitution of -AM and -F for
M and F respectively in each equation results in similar relationships for the
driving wheel.

A strain gage measures average strains along its span. Therefore, a
theoretical profile of the strain £ must be determined and compared with
experimental data:

14
e=-|g, (x)dr (8)
fﬁ
Here, the integration is effected with respect to X along the span [ of a
"mathematical® strain gage between the limits ¢ =x_.—[/2 and
G = X_+1f2, x_ being the center of the strain gage. Following relationships
are thus derived
5,=-8,+8; , —o<xs-b
£= (9)
5,—-8, sy <h
5, +85,-8; , bsx<w
where the functions S,(q,c,) are eventually dependent on the strain gage
coordinate x . and defined as follows
WUl b 10
s - R (10)

S, = 153( [zzq a-b)la-c)b-¢)-
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Equations (9) through (13) were used for comparison between the theoretical
and experimental strain profiles. Almost complete qualitative agreement
between theory and experiment was observed, so no theoretical profiles are
shown. The only exception was the zone ahead of the contact region entry. The
experiment revealed a small wave in this zone as shown in Fig. 1 but no such
zone was present in the theoretical profiles. The quantitative values of
theoretical plots are more than two times as great as the experimental data. This
is a result of the strain gage stiffness being comparable to that of the wheel
material. A strain gage this stiffens the low-modulus material used in the
experiments. A finite element technique combining theory and experiment was
used to determine the stiffening factor [3] employed to make necessary
corrections. The quantitative comparison of the resulting plots demonstrated
their good agreement, leading to a conclusion that for rolling contact between
two wheels with similar elastic constants the two-zone theory of microslip is
acceptable. Similar plots were constructed for the driving wheel, Fig. 2. In the
absence of a tractive force (torque) the entire contact region is evidently
occupied by the adhesion zone, both in the case of two cylinders and a cylinder
rolling on an infinite half-space. As the tractive force is increased to its critical
value T = fP, the appearing slip zone grows at the expense of the adhesion

zone to the point of breakdown associated with slippage. The microslip was
studied for a better understanding of wheel/rail contact interaction. The
geometric slip or creepage, however, is responsible for a much greater
contribution to the overall wear of wheel flanges.

3. Wheel/rail contact interaction
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When the wheel flange is forced against the rail side, the contact between the
wheel and the rail takes place in two regions; such are the cases of rolling in
curves or wheelset hunting on straight track. Since the local wheel radii in the
two contact regions are different, complete slippage occurs in one of the
regions. This is schematically represented in Fig. 3 for the angle of attack & .
The flange contact region B then leads the prime contact region A, the advance
being denoted as a@. A major factor affecting wear of wheel flanges and rail
sides is the lateral guiding force O transmitted from the rail to the wheel flange
in region B. This force is at 2 maximum in running in curves when the angle of
attack attains a maximum. Normally it happens when the vehicle runs to a side

track. In this case
24, [9A?
=— 43— 14
J L 4C (14

where 2A is the maximum gap between the wheel flange and the rail side, L
the vehicle base, C the transition curve parameter. The angle of attack also is a
function of the wheel gap in the new wheelset, the values of wheel wear in the
wheelset, elastic deformations in the wheel axle box etc. The advance a of
region B with respect to the instantaneous axis of wheel rotation is normally
governed [4] by

a=(r+r)tandtanrt (15)
where r is the wheel radius, { the distance between the uppermost level of the
rail head and the flange contact point in region B, 7 the angle of the flange
rolling surface inclination to horizontal. Clearly, finding & for a curvilinear tread
contour, especially of a worn wheel, is a fairly complex mathematical problem.
Yet it is the advance that determines the location of contact region B and
therefore the wvalues of the guiding force and of the flange wear which is a
function of the energy A dissipated through friction in region B when the wheel
turns by an angle ¥ with respect to its instantaneous axis,

A= fOaycosd (16)
Mathematically, a problem of running surface contour design for wheels and
rails can thus consist in minimization of the functional 4, because at given
values of the angle of attack ¢ and the angle of wheel rotation » which
normally is taken equal to 1, 4 is a function of O and @ which are determined
by a number of considerations, the major one being the geometry of the wheel
and the rail interacting with each other.

Consider the statement of problem of pinpointing contact regions A and B
for nonzero angles of attack. The Z-axis is assumed to be directed along the
lane. The rail running surface contours are given by

y=£fi(x) , y=f(x) , -—w<Z< W (17)
describing noncircular cylindrical surfaces for the inner and the outer rail
respectively. Being relatively large, the track curve radius is not taken into
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account. The Eqs. (17) account for the cant of the rails and the actual track
gage, including side wear and elastic displacements of the rails.

A wheel tread can be described as follows. For the outer wheel and a
middle position of the wheelset with respect to the lane, the surface can be
represented in a parametric form

X=x

w
Y=r -[rm - y,,(x,)]cusqp (18)
Z =[r = yu(x,)]sing
where the first parameter X  is the abscissa of the contour generating line in a

system of coordinates associated with the tread contour (Fig. 3), y, the
function describing the wheel running surface contour that generally can be
given in a numerical form, »_ the maximum radius at the flange, ¢ the second
parameter, namely the wheel central angle. When a wheelset undergoes a
displacement & across the lane and turns by an angle ¢ in rolling, the second

relationship in (18) remains unchanged while the first and the third one have to
be rewritten as

X =(x, +5)cnsg'+[rm —-yw{x,,]]sin psing (19)
Z = -{x, - 6)sinr;,’+[r,, —y,,(x,,]]sin Pcoss (20)

These relationships constitute a parametric representation of the wheel surface
that contacts the rail surface described by (17). The task of mathematical
treatment now consists in finding the vertical distance or the height /i of point
W (X.Y.Z) belonging to the tread, with respect to the rail surface. Clearly,

h is a function of tread parameters, that is h= h(xw,up). It is necessary to
minimize A over the set of allowable values for any x, and @. In the case of
the function 4 having a single minimum, its corresponding parameter values x
and ¢ define the tread point which is the initial point of contact with the rail

running surface. When there are two minima, we probably have to deal with a
case of two contact regions. An algorithm of search for regions A and B was
described earlier [5]. It can also be utilized for finding contact stress
distributions in the two regions.

The above theoretical and experimental approaches were employed for
designing new contours of wheel and rail running surfaces. The tread contours
developed for railroad cars and locomotives are purely curvilinear and were
named DMetl profiles after the Dnepropetrovsk Metallurgical Institute, now
State Metallurgical Academy of Ukraine. Among other things, the present
writers described wheel/rail interactions for standard wheels to GOST 9036-838
and R65 rails used in the former USSR [5]. For the case at hand, the interaction
in region B is accompanied by calculated frictional losses of energy A4 = 38.1 J.
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The same analysis yielded a value of 4 = 4.14 J for DMetl LB wheel profile.
The maximum contact stresses in region B of wheels with newly developed
profiles were found to be decreased by 25 to 30 %. This results in lower plastic
deformation of wheel material in the flange region. Fig. 4 depicts some
computer simulation data on DMetl LB wheel/R65 rail contact. Here, o and

o, are the maximum stresses in the regions B and A respectively. The new

profiles reduced wear and extended wheel life in actual service.

Similar research was conducted for rails, resulting in development of rails
with asymmetrical head contour. The rails are currently being tested under
actual service conditions. In in-plant line service they exhibited a 50% extension
in life compared to the standard R&5 rails at sections with heavy traffic loads.
The underlying methodologies can be employed for designing wheels and rails
intended for various axle forces, running speeds and other service parameters.
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Figure 1. &, surface strain profiles for a driven cylinder at various tractive
forces T, (T, > T, > T3)
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Figure 2. £, surface strain profiles for a driving cylinder at various tractive
forces T, (T) > T > T3)
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Figure 3. Schematic of wheel'rail contact interaction at nonzero
angles of attack

Wheel DMetILE
Rail R65

Talt 1:20
5=0.8em

g=2° '

P=122.8815 kN . +
Q=2467597 kN
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Figure 4: Results of computer simulation of wheel/rail contact inter-action.
Wheel DMetl LB, rail R65, tilt of rail = 1:20, 6=0.8 cm, {=2", P =122.8815

kN, O =24.67597 kN, 0,=1725.65 MPa, 5,=1919.88 MPa
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