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LIGHTWEIGHT YOLOV8 - BASED VISUAL DETECTION, LOGISTICS 

PACKAGE GRASPING AND AUTONOMOUS NAVIGATION FOR MOBILE 

MANIPULATORS 
 

Summary. In recent years, the global industrial production and manufacturing paradigm 

from mass production continues to shift to customized production, enterprise order processing 

is also increasingly showing strong timeliness, variety, small batch, batch characteristics, the 

market demand for highly flexible robotic automated production line is also continuing to 

grow. Mobile manipulator is a new type of robot that integrates two functions of mobile robot 

and robotic arm, which can plan routes, navigate accurately, avoid obstacles, and identify, sort, 

grasp, and transport items. It is widely used in logistics and warehousing, factories, indoor 

exhibition halls, etc., which can save the cost of manpower, improve efficiency, and create 

differentiated competitiveness. Despite its promising application, it also faces some challenges 

and problems, especially in the cooperative operation of mobile platform and robotic arm, how 

to realize vision-based target intelligent recognition and grasping is still a current research 

difficulty. In this paper, we build a mobile manipulator platform, deploy and verify a 

YOLOv8n-SCS-CE lightweight detection network proposed in the previous stage, which can 

detect common logistics parcels, and carry out the test of the robot's autonomous mobile 

grasping of parcels, and then autonomously navigating to the target place. The test shows that 

it can use the improved YOLOv8 to realize intelligent grasping and autonomous navigation 

test, which solves the problem of intelligent grasping and autonomous transportation of indoor 

mobile manipulator. This study provides key technologies and methodologies for the 

intelligent grasping and manipulation capabilities of mobile manipulators. 

 

 

1. INTRODUCTION 

 

A mobile manipulator, a highly flexible robot with multi-scene adaptability, typically consists of a 

vision sensing module, a multi-axis robotic arm, a mobile platform, and an end-effector. This system 

enables object recognition, inspection, grasping, and other task-specific functions. Its core technological 

architecture integrates artificial intelligence, mobile manipulation, sensor fusion, and 

localization/navigation technologies [1-3]. 

The research and development of mobile manipulators began earlier abroad, resulting in relatively 

mature technologies. Notable international examples include: the PR2 robot developed by Willow 

Garage (USA); HERB, developed by Intel Pittsburgh Lab and Carnegie Mellon University; the Fetch 
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robot by Fetch Robotics (USA); Stretch, Boston Dynamics' mobile warehouse automation solution; and 

KUKA's (Germany) KMR iiwa robot for mission-critical industrial applications. Although China started 

later in this field compared to other countries, progress has been rapid. Key domestic brands include: 

HSCR5, China’s first intelligent hybrid collaborative robot, launched by Shenyang Siasun Co., Ltd; 

Daystar robot, independently developed by Lenovo Corporation; STAR robot, developed by Shenzhen 

Han's Robot Co., Ltd; and Scara hybrid robot by RobotPhoenix LLC. In summary, these mobile 

manipulators can be applied across various fields, including logistics & warehousing, electronics 

manufacturing, food processing, and pharmaceutical production [4-6]. 

Composite mobile robots have a broad application prospect but also face some challenges and 

problems. Although a lot of research has been carried out at home and abroad on fixed robotic arm visual 

grasping technology, YOLO detection network algorithms, and autonomous navigation of mobile robots 

[7-11]. However, these studies primarily focus on aspects such as the lightweight design of YOLO 

algorithms, visual grasping for robotic arms, autonomous navigation, and collaborative control. There 

remains insufficient research on integrated YOLO-based visual grasping and navigation control for 

mobile manipulators as a complete system. In particular, several technical challenges and bottlenecks 

persist in areas like lightweight YOLO recognition algorithms, eye-hand coordinated grasping, and 

autonomous navigation control [12-14]. How to achieve vision-based efficient target recognition, 

autonomous mobile grasping, and intelligent navigation for mobile manipulators remains a current 

research hotspot.  

To address these challenges, this study develops a mobile manipulator platform that combines 

advanced perception, manipulation, and navigation capabilities. Using the detection and grasping of 

common logistics box-shaped parcels as a case study, the platform integrates three key technological 

components: our previously developed lightweight YOLOv8n-SCS-CE detection algorithm [15] for 

robust object recognition; a vision-guided robotic arm grasping system for precise manipulation; 

LiDAR-based autonomous navigation technology for environment-aware mobility. The synergistic 

combination of these technologies provides a practical solution for logistics automation applications 

requiring both precise manipulation and mobile transportation capabilities. 

 

 

2. CONSTRUCTION OF A MOBILE MANIPULATOR EXPERIMENTAL PLATFORM 

 

2.1. Components of the Test Platform 

 

In order to meet the needs of indoor, warehousing and logistics fields, overcome the limitations of 

traditional fixed-base robots and mobile AGV platforms, and improve the flexibility, safety and 

reliability of a variety of processes, a mobile manipulator platform has been developed (Fig. 1). The 

experimental platform comprises the following core components: a circular indoor intelligent mobile 

base (SHANSU Intelligence Co., Ltd.), an FR5 collaborative robotic manipulator (FAIR Innovation 

Robot Systems, Suzhou), a two-finger parallel gripper (DaHuan Co., Ltd.), an Intel RealSense D435i 

RGB-D camera, and a 2D LiDAR sensor. The platform measures 700×545×500 mm (L×W×H) and 

integrates a 6-axis robotic arm with a 922 mm workspace, complemented by an autonomously 

navigating chassis; its ROS-based control system offers extensive sensor interfaces and API options to 

streamline secondary development and system integration. 

（1） Collaborative Robot Arm 

The FAIR FR5 collaborative robot from the FR series was selected for this application. This system 

features an integrated robot button box and compact control box, offering an extensive working envelope 

within a minimal footprint. Its compatibility with diverse end-effectors and sensor packages ensures 

optimal adaptability to meet all project specifications. The FR5 robotic arm utilizes the frcobot_ros 

software package to create a TCP client-server communication channel with the robot's state feedback 

system. This implementation facilitates continuous real-time data acquisition of the robot's operational 

status parameters. The FR5 features a 5kg payload capacity, 20.6kg total weight, and exceptional 

±0.03mm repeatability. 
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（2） Autonomous Mobile Platform 

The mobile robot chassis from SHANSU Intelligence was selected, integrating multiple sensors to 

facilitate environment perception and autonomous navigation. The system incorporates the WLR-716-

Mini, a high-precision 2D LiDAR, primarily employed for environmental mapping, obstacle detection, 

and SLAM (Simultaneous Localization and Mapping) applications. The IMU Brick 2.0 is a high-

performance IMU (Inertial Measurement Unit) that integrates a 3-axis accelerometer, magnetometer (e-

compass), and gyroscope capable of measuring motion in 9 degrees of freedom. The mobile chassis 

adopts two-wheel differential speed, built-in odometer, LIDAR and IMU, with high-precision 

environment sensing, motion state monitoring and autonomous navigation capability for the mobile 

manipulator. 

Mobile platform

Realsence 

D435 camera

FR5 robotic arm

AG95 two-finger 

gripper

 
Fig. 1. Composition of mobile manipulator 

 

（3） Intel Realsence D435 Camera 

The Intel Realsense D435 binocular stereo camera was chosen to process color images, recognize 

and (Stereo Vision) compute depth information, and the associated driver ROS package is provided. As 

shown in Fig. 2, its forward sensing array is distributed in a horizontal line configuration as follows: the 

first and third from the left are infrared sensors (IR Stereo Cameral), the second from the left is an 

infrared projector while the fourth from the left is a color camera, i.e., a color sensor. 

 

 
Fig. 2. Intel RealSense D435 camera 

 

（4） End Effector 

The DaHuan AG95 articulated adaptive electric two-finger gripper was selected for its robotic arm 

compatibility. Its compact structural design enables adaptive grasping of workpieces with varying 

geometries, ensuring stable manipulation of diverse objects. AG95 has the features of plug-and-play, 

drive and control as a whole, high-precision adjustable gripping force, double gripper control, 

interchangeable fingertips, fast installation, etc., and will be combined with the robotic arm FR5 to 

enhance the flexibility of the gripping system. 

 

2.2. Overall Design of Control System 

 
The experimental platform operates on an Ubuntu 20.04 LTS environment with ROS Noetic 

framework integration. System control is centralized through an industrial-grade mini-PC, which 

orchestrates all hardware modules via unified coordination and real-time scheduling protocols. The 

primary development languages are C++ and Python. The platform system architecture encapsulates 

various functional units - including the robotic arm, depth camera, LiDAR, Gmapping module, and end 

effector - as independent ROS nodes seamlessly integrated into the robot's Ubuntu operating 
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environment. These nodes communicate via ROS topics to receive information, which is then converted 

into hardware commands to ultimately drive the robotic arm in executing target tasks.  

The system employs multiple communication protocols to enable efficient inter-module 

coordination. The chassis differential motor communicates with the main control system through CAN 

bus to realize the motion control and state feedback of the chassis. the robotic arm adopts Ethernet 

(TCP/IP) communication to support high-frequency control and precise positioning; The gripper 

interacts with the main control system through the serial port for grasping and releasing. Environmental 

perception is achieved through an Intel RealSense D435 RGB-D camera, interfaced via USB 3.0 Gen 1, 

providing registered color-depth image pairs and dense 3D point clouds. These hardware modules are 

encapsulated as independent nodes in the ROS noetic system, and each node exchanges data and 

transmits control instructions through topics, etc. The master control system uniformly manages the 

collaborative scheduling of all the hardware to realize the intelligent operation of the robot. The overall 

control system is shown in Fig. 3. 

 

Onboard computer

Mobile platform

YOLOv8n-

SCS-CE

Object 

detection

Edge device

ROS topic

YOLO object detection 

End effectorRobotic arm controllerRobot arm

Grasping Control commandGrasp pose

Motion control

Trajectory planning

Color and depth image Pose

RGB-D LiDAR IMU

Yolo-ROS

deployment

Mapping

 
Fig. 3. Composition of overall control system 

 

 

3. KEY TECHNOLOGIES FOR MOBILE GRASPING OF MOBILE MANIPULATORS 

 

The mobile grasping capability of a mobile manipulator combines the precision grasping of a 

robotic arm with the mobility provided by a mobile chassis. This integration primarily encompasses 

several key aspects: YOLO lightweight target detection network, visual calibration, and autonomous 

navigation SLAM. 

 

3.1. YOLOv8n-SCS-CE Lightweight Detection Algorithm 

 
YOLOv8 used in warehouse logistics field detection requires a large target detection model and 

computational complexity, thus leading to a large amount of computation, resulting in a slow operation 

speed, which is difficult to meet the demand for deployment in embedded or mobile devices. The authors 

of this paper have previously proposed a YOLOv8n-SCS-CE target detection algorithm, which improves 

the model feature extraction capability while maintaining a low computational complexity, and its 

network structure is shown in Fig. 4, with the changes mainly concentrated in the Backbone part and 

Neck part, which is mainly used for detecting common logistics packages [15]. 
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In the backbone network part, conventional convolution is first used to capture the initial spatial 

features and downsample the feature maps, and then the proposed SCS network structure is introduced 

to optimize the data flow method and improve the computational efficiency through the strategies of 

Channel Equalization, Optimization of Channel Shuffle, Reducing the amount of 1×1 convolutional 

computation, and Reducing the cost of memory access. Through these optimizations, the SCS structure 

effectively reduces the computational burden of the YOLOv8 backbone network. In the Neck part, the 

C2f module of the original YOLOv8 is replaced by the C2f_ECA module, which further improves the 

feature extraction capability while controlling the computational complexity. The main optimization 

points of C2f_ECA include the incorporation of Efficient Channel Attention, which avoids additional 

computational burdens while improving the feature selection capability through local cross-channel 

information interactions compared to the traditional CBAM or SE attention mechanisms. 

 
SCS-Backbone

Conv

(24,3,2)

SCS

(96,2)

SCS

(96,1)

SCS

(192,2)

SCS

(192,1)

SCS

(384,1)

SCS

(384,2)

SCS

(48,2)

SCS

(48,1)

Head

Head1

Head2

Head3

Upsamle

C2f_ECA

Concat

Upsamle

640x640x3

SCS

(384,1)

Concat

C2f_ECA

Conv

Concat

C2f_ECA

Conv

Concat

C2f

Neck

 
Fig. 4. YOLOv8n-SCS-CE lightweight detection network 

 

3.2. Robotic Eye-on-Hand Calibration 

 

3.2.1. Camera Intrinsic Calibration 

 

Firstly, the depth camera is fixed on the end rotary joint of the robotic arm to ensure that the 

coordinate system of the camera to acquire data can be consistent with the default coordinate system 

direction of the actuator at the end of the robotic arm, so as to facilitate the coordinate transformation 

between the camera and the robotic arm. Then the camera is activated to acquire the image-aligned RGB 

scene and depth map. This experiment uses MATLAB's own toolbox Camera Calibrator for calibration, 

the advantage of which lies in the accuracy of the calibration as well as the simplicity of the operation 

process in practice. We choose to use a 12×8 checkerboard grid to make the calibration board, and rotate 

the board under the premise of ensuring that the camera is stationary in order to collect a sufficient 

number of pictures. A total of 80 groups of images are collected for the same calibration plate in different 

attitudes, and the camera is calibrated by importing these images into MATLAB and extracting the 

corner points of the images using Camera Calibrator, a toolbox that comes with MATLAB. During the 

calibration process, the system calculates the average calibration error for both the left and right images, 

as well as the simulated attitude between the camera and the calibration target. Images with large errors 

are then removed, leaving 40 valid image pairs. This information can be visualized graphically, as shown 

in Fig. 5 and Fig. 6. 
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Fig. 5. Reprojection errors 

 
Fig. 6. Pose and spatial position of calibration board 

 

The end of calibration yields the camera intrinsic matrix: [607.9263 0 0; 0 607.4232 0; 315.0026 

251.6894 1.0000], the translation vector of principal point coordinates: [-88.0890 -184.4831 608.3623], 

and the rotation matrix: [0.9988 -0.0406 -0.0290; 0.0405 0.9992 -0.0022; 0.0291 0.0011 0.9996]. 

 

3.2.2. Eye-on-Hand Calibration 

 

A hand-eye calibration experiment is a process used in robotics and computer vision to determine 

the transformation between a robot's end-effector and a camera mounted on it. This calibration is crucial 

for tasks like visual servoing, object manipulation. Let the transformation from the camera coordinate 

system to the joint coordinate system at the end of the robotic arm be 𝑇𝑐𝑎𝑚
𝑎𝑟𝑚, the transformation from the 

joint end coordinate system to the base coordinate system be 𝑇arm
𝑏𝑎𝑠𝑒, and the position of the object in the 

camera coordinate system be 𝑃ose𝑐𝑎𝑚, then the position of the object in the base coordinate system can 

be obtained as 

𝑃𝑜𝑠𝑒𝑏𝑎𝑠𝑒 = 𝑇𝑎𝑟𝑚
𝑏𝑎𝑠𝑒 ∗ 𝑇𝑐𝑎𝑚

𝑎𝑟𝑚 ∗ 𝑃𝑜𝑠𝑒𝑐𝑎𝑚   .                                         (1) 

During calibration, to keep the object's pose unchanged, the robot arm's base is not moved, that 

𝑃𝑜𝑠𝑒𝑏𝑎𝑠𝑒 remains unchanged. In order to ensure the calibration effect, n groups of poses are generally 

selected for calibration, from which n position and orientation transformation relations can be derived 

𝑃𝑜𝑠𝑒𝑏𝑎𝑠𝑒𝑛
= 𝑇𝑎𝑟𝑚𝑛

𝑏𝑎𝑠𝑒 ∗ 𝑇𝑐𝑎𝑚
𝑎𝑟𝑚 ∗ 𝑃𝑜𝑠𝑒𝑐𝑎𝑚𝑛

       (𝑛 = 1,2, … , 𝑛)  ,       (2) 

where 𝑇arm
𝑏𝑎𝑠𝑒 can be acquired using the robot's teaching pendant, 𝑃ose𝑐𝑎𝑚 can be obtained by the camera 

calibration, and 𝑇cam
𝑎𝑟𝑚 is unknown transformation to be solved, but it remains constant across all n 

positions during hand-eye calibration. Based on this condition it is possible to obtain Eq. (3) 

𝑇𝑎𝑟𝑚1
𝑏𝑎𝑠𝑒 ∗ 𝑇𝑐𝑎𝑚

𝑎𝑟𝑚 ∗ 𝑃𝑜𝑠𝑒𝑐𝑎𝑚1
=. . . = 𝑇𝑎𝑟𝑚𝑛

𝑏𝑎𝑠𝑒 ∗ 𝑇𝑐𝑎𝑚
𝑎𝑟𝑚 ∗ 𝑃𝑜𝑠𝑒𝑐𝑎𝑚𝑛

  .        (3) 

Any set of equations can be transformed to obtain the equation that 

𝑇𝑎𝑟𝑚2
𝑏𝑎𝑠𝑒 −1

∗ 𝑇𝑎𝑟𝑚1
𝑏𝑎𝑠𝑒 ∗ 𝑇𝑐𝑎𝑚

𝑎𝑟𝑚 =. . . = 𝑇𝑐𝑎𝑚
𝑎𝑟𝑚 ∗ 𝑃𝑜𝑠𝑒𝑐𝑎𝑚2

∗ 𝑃𝑜𝑠𝑒𝑐𝑎𝑚1
−1   .           (4) 
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Let 𝐴 = 𝑇𝑎𝑟𝑚2
𝑏𝑎𝑠𝑒 −1

∗ 𝑇𝑎𝑟𝑚1
𝑏𝑎𝑠𝑒 , 𝐵 = 𝑃𝑜𝑠𝑒𝑐𝑎𝑚2

∗ 𝑃𝑜𝑠𝑒𝑐𝑎𝑚1
−1，𝑋 = 𝑇𝑐𝑎𝑚

𝑎𝑟𝑚,  then we get AX=XB. 

Where both A and B are known, solving for unknown transformation X. Hand-eye calibration is 

performed using MATLAB's built-in Camera Calibrator toolbox. To ensure calibration accuracy, the 

calibration plate remained stationary within the camera's field of view throughout the process. The 

robotic arm is systematically repositioned to capture 15 distinct image sets, optimizing pose coverage 

for robust parameter estimation. This multi-image acquisition strategy enhances calibration precision by 

mitigating measurement noise and improving spatial constraint resolution. The experimental setup is 

illustrated in Fig. 7. 

Depth 

camera

Calibration 

board

 
Fig. 7. Eye-on-hand calibration 

 

Here are several professionally refined versions of the hand-eye calibration results presentation: 

rotation matrix R=[0.9774 0.2073 0.0422; -0.1993 0.9691 -0.1451; -0.0710 0.1334 0.9885]; translation 

vector t=[-72.8437 -5.9962 586.1100] (units: mm). 

After the arm hand-eye calibration, according to the obtained rotation matrix and translation vector 

can be deduced from the coordinate transformation matrix, by the main program publish coordinate 

system conversion, the object to the camera coordinates into the object to the robot arm coordinates, the 

robot arm can be realized grasping. 

 

3.3. Autonomous Navigation via Gmapping SLAM 

 
Gmapping SLAM map construction for mobile chassis requires LiDAR, odometer, IMU, etc. 

Gmapping is a SLAM algorithm based on 2D LiDAR using RBPF (Rao-Blackwellized Particle Filters) 

algorithm to complete 2D raster map construction. Its core problem lies in the simultaneous robot 

position estimation and environment map construction. Accurate position estimation relies on high-

quality maps, while high-quality map construction relies on accurate position estimation, making SLAM 

a complex computational problem. Gmapping shows the advantages of high computational efficiency, 

stable accuracy, and lower requirement for LIDAR frequency in small-scale environment.  

Autonomous navigation experimental environment is shown in Fig. 8, using a virtual machine to 

remotely log in to the host computer of the robot, in turn open the LiDAR node, mobile chassis drive 

node, odometer node, run the Gmapping map building node, run the Rviz visual interface can be viewed 

in real time the map building process, you can control the robot through the handle to move the robot 

slowly to complete the construction of the map of the entire environment, and then save the map. When 

autonomous navigation is required, the navigation node needs to be turned on, the built map file is 

loaded, Rviz is opened on the local machine. The 2D Pose Estimate is used to adjust the initial pose to 

the initial position of the mobile manipulator in the field at this time, with the arrow pointing in the 

direction of the robot's x direction. Ensure that the laser scanning obstacle data and the map obstacles 

basically coincide, use 2D Nav Goal to set the target point and target posture for robot navigation, and 

the robot will automatically plan a feasible path to move to the target point autonomously. 
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Fig. 8. Mapping and map loading tests 

 

 

4. MOBILE MANIPULATOR PROGRAMMING FRAMEWORK DESIGN 

 
The mobile manipulator is developed on the UBUNTU 20.04 operating system with ROS Noetic, 

a widely used open-source framework that provides integrated communication mechanisms, tool 

packages, and other essential functionalities for robotics development. The system implementation 

employs C++ and Python as primary programming languages, with the mobile chassis and FR5 robotic 

arm control functions developed using the ROS MoveIt framework. As shown in Fig. 9, all SRC source 

files within the catkin package are fully accessible and modifiable through VS Code. The architecture 

incorporates multiple customized ROS packages (Fig. 9) organized into 10 core functional modules: (1) 

Battery management system; (2) Gripper modeling and control subsystem; (3) Robotic arm driver for 

hardware communication and operations; (4) Mobile chassis 3D modeling and navigation control 

package; (5) Pointcloud_grasp application layer (containing move_group.cpp and detect.py); (6) RGB-

D camera driver with integrated calibration parameters; (7) ROS-control hardware interface simulator 

and templates; (8) LiDAR driver package and SDK; (9) Custom communication packages 

(topics/messages/actions); and (10) IMU driver package and SDK. This modular design ensures robust 

system integration while maintaining flexibility for future enhancements. 
 

·

1

2

2
2

3

3

3

4

4

5

6
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8

9

10

 
Fig. 9. ROS source (SRC) files in VS Code 
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4.1. Autonomous Mobile Grasping Program Design for Mobile Manipulator 

 
The mobile grasping test of a mobile manipulator involves the cooperative operation of multiple 

functional nodes to realize the detection, path planning and grasping operation of target objects. This 

subsection mainly introduces the program development of the move_group node. move_group relies on 

the MoveIt motion planning framework, which can realize the functions of path planning, path 

execution, inverse kinematics and Cartesian path. Its main program move_group.cpp needs to introduce 

relevant header files and initialize robotic arm control parameters. To implement mobile grasping 

capabilities, define a C++ grasp_demo class for encapsulating the complete grasping pipeline. This 

object-oriented design provides a clean interface for programmatic control of the grasping process. In 

C++, the grasp_demo class contains some member functions and variables, of which the class 

constructor is as follows: 

grasp_demo::grasp_demo (ros::NodeHandle &nh):move_group_(PLANNING_GROUP). 

In the grasp_demo class, where the armGrasp() function is used to execute the complete grasp 

process, as shown in Fig. 11, the grasp_demo class contains the following core variables and functions. 

(1) detect_pub: the ROS publisher used to detect the target object; 

(2) move_group: robot arm motion planning interface; 

(3) target_link & target_link1: the preparatory position and final grasping position for grasping 

the target object; 

(4) init_position & ready_position: initial and recognized position of the robot arm; 

(5) put_position1 & put_position2: the ready position and final position for placing the object; 

(6) arm_name: name of the arm for ROS log output; 

(7) max_object_num: the maximum number of objects to be grasped cyclically; 

(8) timeout: setting the timeout limit. 

 

 
Fig. 11. Design of a grasping class in C++ 
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The main logic of the main program mainly includes the steps of ROS node initialization, 

asynchronous callback processing, autonomous navigation, and grasping execution, as shown in Fig. 

12. 

(1) ros::init(argc, argv, arm_grasp_demo): initialization function, where argc indicates the 

number of parameters, argv indicates the parameter list, and arm_grasp_demo indicates the ROS node 

name; 

(2) ros::NodeHandle nh: create ROS handle, nh is responsible for managing ROS network 

communication, such as topic subscription and publication; 

(3) ros::AsyncSpinner(4): create an asynchronous callback manager and allocate 4 threads for 

processing ROS callback functions to improve system responsiveness; 

(4) spinner.start(): start the callback processing to ensure uninterrupted message delivery; 

(5) gototarget(nav_goal): set the robot's autonomous navigation goal to ensure that it moves to the 

grasping position; 

(6) armGrasp(): responsible for executing target detection, robot arm motion planning, grasping 

and placing operations. 

 
Fig. 12. Main control architecture for move_group.cpp 

 

4.2. Design of Lightweight YOLOv8 Network Target Detection System 

 
(1) Install VMware virtual machine on a laptop, allocate 8G of memory to the virtual machine, set 

40G of disk capacity. To install Ubuntu20.04, ROS noetic version, the deployment of YOLO into the 

need to install Anaconda, create virtual environments, install UItralytics and PyTorch libraries. Next, 

install ROS-related dependencies, such as the dependency libraries installed by rospkg, etc., to ensure 

that the trained weights can be deployed and used in the ROS environment. For the robot's main 
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controller, a laptop serves as an edge device to process real-time YOLO-based image detection 

algorithms.  

(2) Store the pre-trained weights file into the ROS workspace and name it best.pt. Write a ROS 

node to call the YOLOv8 lightweight model for inference. Publish image messages from the depth 

camera to ROS for topic communication, first subscribe to the /camera/image_raw topic to get real-time 

images. After processing, the /yolo_detections topic is published to send the detected target coordinates 

to the robot control system, which subscribes to the /yolo_detections topic to parse the detected target 

position and plan the grasping. 

(3) Open the demo_hardware.launch file in the function package fr5_moveit_config so that the 

mobile manipulator can be launched, and under the workspace launch the rs_rgbd.launch camera node 

of the realsense2_camera function package; the dh_gripper_driver function package's dh_gripper.launch 

node; the pointcloud_grasp package's move_group_demo node and color_detect.launch node. As shown 

in Fig. 13-14, after starting the corresponding nodes and loading the detection model, the remote VM 

successfully runs the YOLOv8n-SCS-CE lightweight detection algorithm after two-way topic 

communication, and the master and slave detect the target parcel in real time. 

 

 
Fig. 13. Improved lightweight YOLOv8 model for parcel detection 

 

 
Fig. 14. Robot system subscribes to YOLO topic data 
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5. COMPREHENSIVE EXPERIMENT OF MOBILE GRASPING AND AUTONOMOUS 

NAVIGATION 

 

The target parcel recognition and grasping test procedure (Fig. 15) operates as follows: The system 

first acquires aligned RGB and depth images via the depth camera, then publishes the visual calibration 

parameters through a TF-generated .yaml file. It subsequently calculates the target object’s centroid 

coordinates derived from RGB, depth value, and rotational orientation. These parameters are processed 

by the programmable move_group interface, which leverages MoveIt for kinematic motion planning. 

Finally, the planned trajectory is executed via ROS control, guiding the robotic arm’s end-effector to 

the designated grasp pose. 

Realsense

D435
MoveIt ROS Interface

Manipulator ROS Controller

ROS

Pixel coordinates

(x, y)

Camera coordinate system

(x, y, z)

IK/FK

 
Fig. 15. Visual grasping pipeline for target objects 

 

5.1. Mobile Manipulator Grasp Tests 

 

The purpose of the Tests is to test the mobile grasping performance of the mobile manipulator. The 

remote virtual machine subscribes to the camera image topic published by the host, while simultaneously 

activating the lightweight YOLOv8 detection node. After image processing, the robot host receives the 

target detection results output by the lightweight YOLOv8 node on the virtual machine via the topic. 

For each detected target package, the center coordinates (x, y) of the bounding box are extracted, and 

the rotation angle of the gripper is determined based on the principal axis direction of the box-shaped 

package in the image. By reading the pixel coordinates of the target's center point, the corresponding 

depth value z in the depth map is obtained, thereby acquiring the complete spatial position (x, y, z) of 

the target to construct the grasping information. In the move_group program, the target points for mobile 

grasping are predefined, including the initial pose, recognition pose, grasping pose, placement pose, and 

final pose. During the mobile grasping process, the robot automatically plans its path and moves 

according to the preset navigation points. 

Small box-shaped packages are selected to validate the mobile manipulator's grasping performance. 

The image resolution during the grasping process is set to image resolution 640×480. The gripper's 

control function is configured with a position value of 950, a grip force of 100, and a speed set to the 

maximum range of 100 in the registers. 

The robot's camera node is activated to capture real-time images, and a pre-trained weight model 

was used for object detection. The detection results, combined with the 3D coordinates obtained from 

depth information, are transmitted to the robot control system via the tf_package. After completing the 

grasping task, the robot moves to the designated placement location and then returns to its initial 

position. In this study, the target grasping process is simplified to a 2D planar grasping problem. 

Throughout the experiment, the camera remains within the optimal viewing range of the box-shaped 

package, and the gripper performs the grasping operation vertically from above. The experimental 

process is illustrated in Fig. 16. 
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Fig. 16. Vision-based mobile manipulation for parcel grasping 

 

Due to the lack of GPU acceleration support on the virtual machine, the system exhibited 

suboptimal real-time performance, achieving a grasping success rate of 66%. Subsequent studies will 

employ higher-computing-capacity devices for validation and analysis. 

 

5.2. Autonomous Navigation Testing Using Gmapping SLAM 

 
The mobile robot utilizes a LiDAR, odometry, and IMU sensors, employing the particle filter-

based SLAM algorithm to construct a 2D grid map from collected laser scans and pose relationship data. 

In ROS, move_base serves as the core node for autonomous navigation, integrating both global and 

local path planning to enable self-guided robot movement. During autonomous navigation, the global 

costmap facilitates global path planning by computing an optimal route from the starting point to the 

target within the known map. It avoids static obstacles while minimizing travel distance. The local 

costmap handles local path planning by dynamically detecting real-time environmental changes (e.g., 

moving obstacles). It continuously adjusts the trajectory during execution to ensure obstacle avoidance 

and smooth navigation. 

Upon receiving a navigation target, move_base first invokes the global path planner (Dijkstra's 

algorithm) to generate an optimal route on the global costmap. Subsequently, the local path planner 

employs the Dynamic Window Approach (DWA) algorithm to dynamically adjust the robot's trajectory 

in response to real-time environmental changes. As illustrated in Fig. 16, the autonomous navigation 

experiment proceeds as follows: The robotic arm visually grasps the target package. The mobile 

platform follows predefined navigation waypoints, automatically generating global and local paths. 

move_base computes feasible linear and angular velocities, transmitting them via the ROS topic 

/cmd_vel to the low-level controller, driving the robot along the planned trajectory. The red arrow 

indicates the robot's initial heading direction in Fig. 16. The trajectory of the red arrow's variation 

reflects real-time adjustments in movement and orientation. Experimental results demonstrate that when 

navigation waypoints comply with the costmap constraints, the system successfully achieves 

autonomous transport—placing the grasped target into the designated collection bin. This experiment 

demonstrates the mobile robot's autonomous transport capabilities using the Gmapping SLAM 

algorithm. The system integrates data from LiDAR, odometry, and IMU sensors to construct and update 

a 2D occupancy grid map in real-time while simultaneously localizing the robot within this map. 

Mobility tests demonstrate a 96% success rate in autonomous transportation, with navigation and 

localization accuracy maintained at ±3 cm. 
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Fig. 16. Autonomous navigation experiment with Gmapping SLAM 

 

 

6. CONCLUSIONS 

 

This study establishes an integrated robotic test platform to investigate core technologies in mobile 

grasping and autonomous navigation. The principal findings are as follows: 

(1) The integrated robotic system is developed using Ubuntu 20.04 and the open-source ROS 

Noetic framework. The platform comprises several key components: an intelligent differential wheel 

mobile platform, an FR5 series 6-DOF collaborative robotic arm, two-finger gripper, and RGB-D depth 

camera, etc. The robotic arm is located on the mobile robot, and it can be flexibly moved along with the 

robot to realize visual grasping, navigation and transportation of specific objects. 

(2) Addressing computational limitations of conventional YOLO algorithms for mobile 

deployment, we implement our previously developed lightweight YOLOv8n-SCS-CE network on an 

edge device. The system achieves efficient detection of common logistics box-shaped parcels through 

bidirectional ROS topic communication between the host machine and virtual machine. This distributed 

architecture implements YOLOv8-based target detection on the remote virtual machine while reserving 

visual grasping and motion control functions for the host machine, thereby significantly reducing the 

host's computational resource consumption. 

(3) We have developed an autonomous navigation system based on Gmapping SLAM that enables 

the mobile manipulator to perform lightweight YOLOv8 visual grasping and autonomous transportation 

tasks. The system achieves an approximately 66% success rate in object grasping tasks, attains a 96% 

success rate in indoor autonomous navigation, and maintains a positioning accuracy of ±3 cm. This 

integrated solution effectively addresses three key challenges in indoor parcel handling: intelligent 

detection, YOLO v8 grasping, and autonomous transportation. Future work will focus on optimizing 

critical grasping parameters including end-effector pose accuracy, grasping target recognition, and 

object approach trajectories to further improve system performance. 
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